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Structural relaxation, self-diffusion, and kinetic heterogeneity
in the two-dimensional lattice Coulomb gas
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We present Monte Carlo simulation results on the equilibrium relaxation dynamics in the two-dimensional
lattice Coulomb gas, where finite fractionsf of the lattice sites are occupied by positive charges. In the case of
high-order rational values off close to the irrational number 12g @g[(A521)/2 is the golden mean#, we find
that the system exhibits, for a wide range of temperatures above the first-order transition, a glassy behavior
resembling the primary relaxation of supercooled liquids. Single-particle diffusion and structural relaxation
show that there exists a breakdown of proportionality between the time scale of diffusion and that of structural
relaxation analogous to the violation of the Stokes-Einstein relation in supercooled liquids. Suitably defined
dynamic cooperativity is calculated to exhibit the characteristic nature of dynamic heterogeneity present in the
system.
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I. INTRODUCTION

The dynamics of supercooled liquids approaching
glass transition remains one of the most fundamental p
lems in condensed matter physics@1#. Some of the prominen
dynamic features in supercooled liquids include the en
mous increase in the relaxation time scale with lower
temperature, and the nonexponential relaxation in respo
to an external perturbation. In addition to these features
anomaly in transport properties, such as a breakdown of
Stokes-Einstein~SE! relation in highly supercooled liquids
has been observed in experiments@2# and simulations@3–5#.
Although there exist some theoretical attempts@6–10#, the
underlying microscopic mechanism for the violation of t
SE relation is not well understood. Recently, there have b
many experimental and simulational studies of supercoo
liquids that demonstrate the existence of kinetic heteroge
ity which was often invoked to explain the origin of th
nonexponential relaxation as well as the breakdown of
SE relation@11#.

In relation to these questions on microscopic slow d
namic features in supercooled liquids, we deemed it wo
while to investigate whether similar dynamic features can
found in simpler lattice spin systems or lattice gas syste
In this work, we show that the aforementioned features
supercooled liquids, i.e., slowing down, nonexponential
laxation, and the~analog! of the breakdown of the SE rela
tion, are also observed in a two-dimensional~2D! lattice
Coulomb gas~LCG! system. We also find that the relaxatio
of the system exhibits a spontaneous appearance of sp
heterogeneity, which we argue is the underlying cause for
nonexponential relaxation and the breakdown of the SE
lation.

In recent years, there have been some efforts to
glassy dynamic features in the lattice spin systems with n
random interactions@12#. One of the well-known example
of disorder-free lattice model system is uniformly frustrat
1063-651X/2001/64~6!/066103~10!/$20.00 64 0661
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XY ~UFXY! models in two dimensions, which serve as
model for two-dimensional arrays of Josephson junctions
der the influence of uniform transverse magnetic fields. R
cent work@13# has shown that, irrespective of the true natu
of the low temperature phase of this system, the equilibri
dynamics of the UFXY model in the intermediate range
the temperature for frustration parameterf near 12g[(3
2A5)/2.0.382 exhibits a close analogy to that of sup
cooled liquids. Both spin and vortex dynamics sho
stretched exponential relaxations with temperatu
dependent stretched exponents. In order to investigate
dynamics of this system in more detail, we attempted to c
culate the self-diffusion properties of vortices. However,
turned out to be numerically ambiguous and tricky to tra
the trajectories of individual vortices. This is because in
vidual vortex around a plaquette is defined in terms of ph
angles and one probes the movement of individual vorti
not directly but only indirectly through changes of phas
which at times, especially when multivortex motion occu
makes it ambiguous to determine the original position o
vortex corresponding to a new neighboring vortex.

One way to overcome this difficulty was to map th
UFXY model onto a LCG via Villain transformation@14#,
where the positive charges in the LCG correspond to
positive current vortices in UFXY models. One can read
probe the diffusive dynamics of charges without ambigu
in the LCG unlike the case of UFXY model. Hence we c
investigate both the structural relaxation dynamics and s
diffusion dynamics of individual vortices in LCG with rela
tive ease.

With this advantage, we have numerically investigated
equilibrium relaxation dynamics and diffusion characterist
of LCG with the charge density factorf near 12g.0.382.
We observe that for some range of temperatures above
first-order transition, the equilibrium relaxation exhibits slo
dynamic features such as stretched exponential relaxa
and a breakdown of proportionality between the diffusi
©2001 The American Physical Society03-1
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time scale and the structural relaxation time scale.
It was a common belief that the 2D UFXY model and t

corresponding LCG belong to the same universality cl
with essentially the same phase transition properties, gro
state symmetry, for example. However, recent work on LC
by Gupta, Teitel, and Gingras~GTG! @15# and also anothe
work on the UFXY model by Denniston and Tang~DT! @16#
showed that there exists some difference between the
model systems, especially in the case of dense frustra
Both model systems exhibit first-order transition but the l
temperature vortex configurations in UFXY models are d
ferent from the charge configurations of the correspond
LCG for f near 12g.0.382. The underlying cause for th
breakdown of the Villain approximation in the limit of dens
frustration is not known, but it is probably related to th
application of spin-wave integration to systems having ma
metastable states with similar energies, which may cause
neglect of multivortex correlations.

Special interest has been given to the case off approach-
ing 12g @17,18#. Consider a system wheref equalsp0 /q0
(p0 andq0 are relative primes! which is a rational approxi-
mant to 12g. Here, in the case of a UFXY model, DT a
gues that the low temperature vortex configuration has lat
periodicity which is of orderq0

2, i.e., much larger thanq0. On
the other hand, in the case of LCG, GTG@15# showed, via
Monte Carlo ~MC! simulations, that the low temperatur
charge configurations are characterized by arrangemen
diagonal stripes that are either completely filled, complet
empty, or partially filled with charges that are quite differe
from those vortex configurations in the corresponding UF
model. However, GTG did not enumerate the exact patte
of low temperature charge configurations~such as spatial pe
riodicity! for general cases of dense charge filling. In th
work we find that, for the values off between 1/3 and 2/5
there exist a simple regularity in the low temperature cha
configuration which consists of periodic arrangements
combinations of a few basic striped charge patterns~see Sec.
III !.

For a wide range of quenching temperatures above
first-order transitionTc , the equilibrium relaxation continue
to slow down with lowering temperature, and the form of t
relxations are characterized by the stretched exponential
temperature-dependent exponents. Moreover, we obs
that the model exhibits a separation of the two character
time scales, i.e., the time scale of single-particle diffus
and that of structural relaxation. This feature is quite ana
gous to the breakdown of the SE relation observed in su
cooled liquids. Stretched exponential relaxation is obser
to be accompanied by interesting dynamic heterogeneit
the system. It appears that the kinetic heterogeneity is
underlying reason for both the stretched exponetial re
ation and the separation of the relaxation and diffusion ti
scales.

A convenient measure for dynamic heterogeneity is
so-called dynamic cooperativity@19# of the particle motions.
This measures the reduction of the effective degrees of f
dom. One interesting result from our simulations is that
magnitude of the velocity~or displacement vector! exhibits a
strong increase in cooperativity of the particle motions.
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the other hand, the displacement vector itself shows coo
ativity a little smaller than unity due to anti-correlations
the direction of particle motions. This means that the syst
can be divided into highly mobile regions and relatively ine
regions, resulting in highly inhomogeneous local mobil
distribution. However, there is no macroscopic flow of pa
ticles that will generate long-range positive correlations
tween the directions of flows of particles.

When quenched to a temperature belowTc , the system is
always found to undergo phase ordering via slow coarsen
processes. The system therefore does not remain in a s
cooled state. Rather it becomes slowly crystallized. It sho
be emphasized that in this system it is the relaxation for
temperaturesabove Tc that exhibits slow dynamic behavio
which shares some common features with that of sup
cooled liquids.

II. MODEL AND SIMULATION METHODS

General 2D LCG@20# is described by the following
Hamiltonian that can be mapped from the UFXY model
means of the Villain transformation@14#,

HCG5
1

2 (
i j

QiG~r i j !Qj , ~1!

where r i j is the distance between the sitesi and j, and the
magnitude of chargeQi at site i can take either 12 f or
2 f , wheref corresponds to the frustration parameter in t
related XY models. Charge neutrality condition( iQi50 im-
plies that the number density of the positive charges is eq
to f. As was mentioned above, we can thus view the sys
as a lattice gas ofN f charges of unit magnitude upon un
form negative background charges of charge density2 f
(N5L2 is the total size of the system with the linear dime
sionL). The lattice Green’s functionG(r i j ) solves the equa-
tion

S D22
1

l2DG~r i j !522pd r i j ,0
, ~2!

whereD2 is the discrete lattice Laplacian andl is the screen-
ing length which, in a normal case of no screening, is se
an infinity. For the case of the usual Villain transformation
the UFXY model, we havel5`. But it is included in this
equation for generality. Since, in this work, we restrict o
attention to only a square lattice with periodic boundary co
ditions,G(r ) is given by

G~rW !5
p

N (
kWÞ0

eikW•rW21

22coskx2cosky11/l2 , ~3!

wherekW are the allowed wave vectors withkm5(2pnm /L),
with nm50,1,. . . ,L21. In the case of infinite screenin
length, for large separationr, one getsG(rW).2 ln r @21#. In
this work we consider the limiting case ofl→` only.

In our MC simulations, the initial disordered random co
figuration is updated according to the standard Metrop
algorithm by selecting a positive charge at random and m
3-2
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FIG. 1. Snapshots of charg
configuration at time steps~a! t
516 MCS,~b! t54096 MCS,~c!
t565 536 MCS, and ~d! t
51 048 576 MCS for temperature
T50.026, L536, andf 555/144,
exhibiting coarsening toward an
ordered striped state. Positiv
charges are represented by fille
squares.
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ing it over to one of the nearest neighbor~NN! or next near-
est neighbor~NNN! sites@15#. We find that this NNN hop-
ping algorithm is particularly effective in terms of simulatio
time as compared with NN hopping alone, as was emp
sized in @15#. Moreover, at low temperature, NN hoppin
alone presented severe energy barriers to the motion
charges in the case of relatively dense Coulomb gas, i.f
approximately larger than 1/3.

The presented results are averages of over 1002500 dif-
ferent random initial configurations, depending on the te
perature. In order to ensure that equilibration is achieved,
calculate the two-time charge density autocorrelation fu
tion and locate the waiting time beyond which the autoc
relation function no longer depends on the waiting time.
for the values of the charge density parameterf, we chose
f 555/144.0.3819, which is close tof 512g, and square
lattices of linear sizeL536 are chosen with periodic bound
ary conditions. This value off is chosen as a simple ration
value that satisfies the two conditions of both being close
12g and being commensurate with the lattice periodicity
as explained in Sec. III. We found that qualitative features
relaxation dynamics are the same for other nearby value
the frustrationf.

III. SIMULATION RESULTS AND DISCUSSIONS

A. First-order transition and low temperature configuration

We first discuss the equilibrium phase transition a
charge configuration of the system. As was first shown
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GTG, we also find that there exist a first-order transition
LCG with f near 12g. Figure 1 shows temporal snapshots
charge configurations evolving from a disordered state i
an ordered configuration after being quenched to a temp
ture T50.026. The first-order nature of the phase transit
can easily be confirmed by enumerating the histogram
energiesP(E) near the transition temperature@22#. P(E) is
obtained by counting the occurrences of energies for eac
the equally spaced energy bins while performing the equi
rium Monte Carlo simulations~via simple Metropolis algo-
rithm!. For a system with a first-order transition, the ener
histogramP(E) becomes bimodal near the transition tem
perature corresponding to a mixture of the ordered s
~with lower energy! and a disordered state~with higher en-
ergy!. The transition temperatureTc can be determined by
locating the temperature where the subareas under the
peaks are equal. Figure 2 shows two histograms near
transition temperature, where we could estimate the tra
tion temperature approximately asTc.0.0316. Since we did
not attempt a detaled analysis~including a finite size scaling!
of the histogram, we think that this estimate value of t
transition temperature should not be considered too serio
for its precision.

We find empirically that there exist a simple regularity
the low temperature charge configuration in LCG~Fig. 3!.
For the case of values off in the range 1/3< f <2/5, it is
found that the low temperature configuration becomes qu
one-dimensional with periodic striped patterns. In the ca
of f 51/3 and f 52/5 the ground state configurations a
3-3
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identical to the low temperature vortex configurations in
UFXY model. However, for values off in between 1/3 and
2/5, the low temperature patterns are found to be, unlike
case of the corresponding UFXY model, consisting of pe
odic arrangements of combinations of two out of three ty
of striped charge patterns as follows.

First the component pattern~type I pattern! is a sequence
of three diagonals which areempty, filled, andempty, respec-
tively @that may be denoted by~010! in our notation where 1
refers to a filled diagonal and 0 refers to an empty diagon#.
In other words, it is a pattern with a single isolated diago
filled with charges that is neighbored by empty diagonals
both sides. Repetition of this pattern alone produces
ground state configuration for the case off 51/3 with spatial
periodicity three.

Second component pattern~type II pattern! consists of a
sequence of five diagonals that areempty, filled, empty, filled,
andempty, respectively, or~01010! in our notation. This may
be termed as a double-filled diagonal because two filled
agonals are positioned in parallel at a second neigh

FIG. 2. Energy histogram near the first-order transition tempe
ture ~for T50.031 65 andT50.0317).

FIG. 3. Regimes of charge patterns for the range of valuesf
between 1/3 and 2/5. See the text for details.
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This forms the basis of the ground state configuration for
case off 52/5 with lattice periodicity five.

Lastly, the third component pattern~type III pattern! con-
sists of a sequence of seven diagonals that are sequen
empty, filled, empty, partially filled, empty, filled, andempty,
i.e., (010p010) in our notation, wherep refers to a partially
filled diagonal where only part of the diagonal sites are
cupied by positive charges. This pattern is essentially a p
tially filled diagonal enveloped by two filled diagonals o
both sides at the second neighbor diagonal position, wh
may be termed as achannelstructure. This can form a basi
with spatial lattice periodicity seven.

Here we describe the low temperature ordered patterns
values off around 12g only, leaving the detailed descriptio
of the charge patterns for the full range off values between
1/3 and 2/5 to a separate publication@23#. Near the value of
the filling ratio f 512g.0.382, we find that, among th
three patterns above, only two types~type II and type III
patterns! participate in the stable charge configurations w
the resulting spatial lattice periodicity depending on the co
bination of the two component patterns.

We find that there exists a valuef 5 f c.0.381 which
separates two regimes with distinct low temperature stri
patterns. For values off in the range 0.36& f &0.381, the
stable striped patterns turn out to have periodicityl p57
which consists of simple repetitions of channel structu
~type III pattern!. Note that this periodicity seven refers t
the periodicity of the filled diagonals only~neglecting the
true periodicity including the charge configurations with
the partially filled diagonals!.

On the other hand, for values off in the range 0.381& f
&0.39, the stable configuration exhibits a periodicityl p
512, which consists of double-filled diagonals~type II! and
channels~type III! alternatingly placed. As the value off
continuously increases within the two regimes~in the above!,
the system in the low temperature stable configuration s
ply adjusts itself by accomodating the extra charges into
partially filled diagonal channels and thereby changing
charge filling within the channels. The dividing value off
5 f c.0.381 between the two regimes appears to corresp
to the value 8/21 in which case the partially filled diagon
have a filling density exactly equal to 2/3. In general,
much lower temperatureTp ~below Tc) the charges within
the partially filled channels are expected to exhibit order
@15,23#, which would depend sensitively on the rationality
the exact filling ratio of charges inside the partially fille
diagonals.

An important aspect of our simulations is that one has
choose the lattice size appropriately in order to match
periodicity of the true low temperature configuration in t
thermodynamic limit. If, otherwise, one chooses a lattice s
that is incommensurate with the periodicity~of striped pat-
terns!, then one ends up with defective charge configuratio
with patches of local ground state configurations. We th
that this is probably why GTG got two different equilibrium
configurations when two different lattice sizesL526 andL
552 are used forf 55/13 since theseL ’s turn out to be
incommensurate with the true periodicityl p512.

-

3-4
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FIG. 4. ~a! Charge autocorrelation functions for temperaturesT50.1, 0.08, 0.06, 0.05, 0.045, 0.042, 0.039, 0.037, 0.035, 0.033.~b!
Arrhenius plot for the relaxation time@ log(t) versus 1/T]. ~c! Charge autocorrelation functions in~a! replotted in terms of the rescaled tim
t/t(T) which shows that the time-temperature superposition is broken.~d! Temperature dependence of theb andb exponents for charge
autocorrelation functions.
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Even when the screening lengthl is finite, we find that, at
low temperatures, the striped configurations shown ab
persist up to the limit of the screening lengthl*lc with lc
being approximately of order one@23#. If the screening
length is further reduced belowlc , then the striped configu
rations seem to be no longer stable in such a way that
partially filled diagonals get rarer. The influence of t
screening effect on the statics and the relaxation dynam
needs further study.

B. Equilibrium relaxation dynamics

We now discuss the equilibrium relaxation dynamics
the model above first-order transition. In order to probe
structural relaxation of charges, we measured the on-
charge autocorrelation functions,

C~ t !5K (
i 51

N

Qi~0!Qi~ t !L Y N, ~4!
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where the large angular brackets represent an average
different random initial configurations.

Shown in Fig. 4~a! is the on-site charge autocorrelatio
function C(t) for temperatures fromT50.1 down to T
50.033. From this figure, we observe a slowing down in t
structural relaxation for this temperature range. One can
tract a characteristic time scalet(T) which, for example, is
defined asC„t5t(T)…51/e for each temperatureT. As Fig.
4~b! clearly shows, the temperature dependence of the re
ation time exhibits a non-Arrhenius behavior. We al
checked whether the so-called time-temperature superp
tion holds for the above autocorrelation functions, which
shown in Fig. 4~c!. We clearly see that time-temperature s
perposition is systematically broken by the autocorrelat
functions. This is consistent with the fact that the stretch
exponents have dependence on temperature as is show
below.

We find that the relaxation pattern of the correlation fun
tion C(t) can be characterized by a power law relaxati
3-5
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SUNG JONG LEE, BONGSOO KIM, AND JONG-RIM LEE PHYSICAL REVIEW E64 066103
C(t)512Atb(T) ~known as the von Schweidler relaxatio!
in the early time regime and a stretched exponential re
ation C(t)5C0(T)exp(2A8tb(T)) in the late time regime.
However, as the temperature gets higher, the regime of
lidity for early time power law relaxation was significant
reduced and we could better fit the early time relaxation w
another stretched exponential formC(t)5exp(2A9tb8(T)). Of
course for the low temperature regime, we could getb(T)
.b8(T).

Figure 4~d! shows the temperature dependence of the
ted exponents. We see that nonexponentiality increase
the temperature decreases. These results clearly indicate
the equilibrium relaxation in the 2D LCG aboveTc closely
resembles the primary relaxation of typical fragile liquids

One of the main characteristic features of the sing
particle dynamics is described by the mean square displ
ment ^(DrW)2&, which is defined as

^~DrW !2&5K (
j 51

NQ

@rW j~ t !2rW j~0!#2L Y NQ , ~5!

whererW j (t) is the position vector of thej th charge at timet
andNQ the total number of charges. Figure 5 shows^(DrW)2&
for various temperatures. It exhibits an early time subdif
sive regime and crosses over into the late time diffusive
gime. Diffusion constantD can be obtained from the relatio

^(DrW)2&.4Dt in the long-time limitt→`. Early time sub-
diffusive behavior is thought to be coming from local fru
trated motions of charges before reaching an average
placement of unit lattice spacing. The inset of Fig. 5 displa
the inverse diffusion constant 1/D versus the inverse tem
perature 1/T, which shows that 1/D exhibits an approxi-
mately activated behavior in this temperature range.

To test the proportionality of the two time scales, t
structural relaxation time scalet and the diffusion time scale
D21, we plot the temperature dependence of the prod
4Dt in Fig. 6. Here, we clearly see that the breakdown of

FIG. 5. Squared displacementW(t) versus timet for the same
temperatures as in Fig. 4~a!. The inset shows the inverse diffusio
constant 1/D versus the inverse temperature 1/T, which exhibits an
approximate activated behavior.
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proportionality between the two time scales is observed fo
wide range of temperatures belowT50.1 and becomes
stronger as the temperature is lowered. This separation o
two time scales is due to the weaker temperature depend
of the diffusion coefficient. That is, diffusion is relativel
enhanced at lower temperatures. This is quite analogou
the violation of the SE relation (D5T/ah, where a is a
molecular length andh is the viscosity of the liquid! ob-
served in experiments on supercooled liquids@2#. Here we
mention that there exists a correlation between the incre
of nonexponentiality~as the temperature is lowered! and the
increase of the product 4Dt at low temperatures@24#.

If we suppose that there exists a single dominant rel
ation mode in the system~and hence one relaxation tim
scalet), then we would obtain a simple exponential behav
for the relaxation functionC(t);e2t/t. On the other hand, if
the system consists of many regions with different relaxat
times, then the relaxation function would be roughly som
superposition of exponentials with a broad distribution
relaxation times, which would be in general not expressi
in a simple exponential form, but in stretched expone
form or other more complicated forms.

The fact that there exists a breakdown of proportiona
betweent andD21 can be interpreted in the following wa
that invokes dynamic heterogeneity. As the temperature
lowered, the system consists of many regions with differ
relaxation time that comes from different local mobilitie
We can easily see that the structural relaxation time is do
nated by the least mobile regions, that is, by the regions w
the longest relaxation time. On the contrary, the aver
~long-time! diffusion characteristics are dominated by t
most mobile regions. In other words, the structural relaxat
function and the self-diffusion function, respectively, a
probing more or less opposite aspects of the relaxation
havior of the system. For an extreme example, one can im
ine a system where half of the whole system is frozen~no
motion of the component particles! while the remaining half

FIG. 6. Comparison of the two time scalesD21 and t (4Dt
versusT), which implies that the diffusive time scale increas
slowly ~as the temperature is lowered! as compared with the struc
tural relaxation time.
3-6
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STRUCTURAL RELAXATION, SELF-DIFFUSION, AND . . . PHYSICAL REVIEW E64 066103
of the system has a finite relaxation time with uniform
distributed mobile particles. For this system the structu
relaxation timet would be infinite due to the frozen half o
system, but the inverse of the average diffusion cons
D21 is finite due to the mobile part of the system, leading
an extreme breakdown of the SE relation. The above si
lation result thus can be interpreted as evidence pointing
ward the existence of a kinetic heterogeneity in the rel
ation dynamics and the mobility of the system.

In fact, the kinetic heterogeneity can be visualized in o
system. Typical charge configuration atT50.033, as shown
in Fig. 7, exhibits local striped patterns~ordered domains!
and interfacial regions due to mismatch between adjac
domains. For a fixed quenching temperature, the average
of these local domains reaches a certain length scale w
the system equilibrates. After equilibration, the system str
turally rearranges itself going from one configuration to a
other with local domains of similar length scale. Figure
shows the trajectories of moving positive charges over a t
interval of 500 MC steps forT50.033~corresponding to Fig.
7!. We can see that there exist local regions with activ
moving charges and other regions with relatively immob
charges. Among the active regions, we can find th

FIG. 7. Typical charge configurations atT50.033. Positive
charges are represented by filled squares.

FIG. 8. Trajectories of moving positive charges atT50.033
over a time interval of 500 MC steps. Arrows indicate the directio
of single charge motions.
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charges moving along partially filled diagonal channels. W
also find some extended interfacial regions where no disc
ible local order can be identified that exhibit relatively hig
mobility. Enhancement of particle diffusion is probably du
to the motions of charges along the partially filled diagon
as well as those fluidized motions in the extended interfa
regions. These fastly moving regions in surroundings of v
slowly moving regions offer a specific example for spat
heterogeneity in glassy systems@4,5#, which was often
thought of as the physical mechanism for breakdown of
SE relation.

One simple way to quantify the degree of dynamic h
erogeneity directly from the local motions of particles is
calculate the dynamic cooperativity@19# for one particle dy-
namic quantities such as, e.g., displacement vectorsXi

[urW i(t1Dt)2rW i(t)u between the timet and t1Dt for some
fixed time intervalDt. We can also chooseXi to be the
vector displacement itselfXi[rW i(t1Dt)2rW i(t). If there are
no correlations between the motions of particles, then
variations of theXi ’s will satisfy

sF(
i

Xi G5(
i

s@Xi #, ~6!

wheres@x# denotes the mean square deviations of the r
dom numberx, s@x#[Š(x2^x&)2

‹. However, some correla
tions between the particle motions will increases@( iXi # or
anticorrelations will decrease it. Following Doliwa an
Heuer, we can define the dynamic cooperativity as

NX
coop[

sF(
i

Xi G
(

i
s@Xi #

. ~7!

In the case of no correlations between the motions of p
ticles, as in Eq.~6!, we getNX

coop51. If there exist some
positive correlated motions between particles, we would
NX

coop.1, while anticorrelations between the motions of pa
ticles would result inNX

coop,1. Doliwa and Heuer investi-
gated the dynamic cooperativity of hard sphere system
2D and 3D, where they found finite cooperativity (NX

coop

.1) for both vector displacement and the scalar magnit
of the displacement, which is consistent with the snapsh
of the particle motions in their work. They argue that t
dynamic cooperativity measures the total reduction of
grees of freedom due to the correlations. Here we also s
ied the dynamic cooperativity of the lattice gas particles
calculatingNX

coop for both the scalar displacement and t
vector displacement itself. Interestingly, we found that t
scalar displacement exhibited finite dynamic cooperativ
@Fig. 9~a!#, while the vector displacement itself showed we
anticorrelations between particles, as shown in Fig. 9~b!. In
the case of scalar displacement, the cooperativity increas
first as the time intervalDt increases and reaches its max
mum near thea-relaxation time scalet. Then it decreases
back to values around unity~corresponding to no correla
tions! at largeDt.

s
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Contrasting features of cooperativity for our LCG syste
and that for the hard sphere systems may be interprete
follows. In the case of hard sphere systems near the g
transition, the packing density is very high and the interp
ticle interaction is a short-ranged one. Therefore, the lo
motions of particles in hard sphere systems are natur
highly correlated in both its direction and magnitude due
the continuity constraint of particles resulting in a large sc
flow with directional correlations.

In contrast, in the case of the LCG, the density of partic
is relatively low (f .0.38) as compared with the case of ha
sphere systems near the glass transition. In addition to
charge motions in the LCG are driven by the thermal effe
From the snapshots of charge configurations, we see
there exist locally mobile regions as well as locally immob
regions. Locally immobile regions consist of charge config
rations that are close to the low temperature striped patte
Mobile regions, however, consist of charges that are agita
in random directions due to the thermal effect. Thus we
not observe positive dynamic cooperativity in vector d
placement, but only the scalar displacement exhibits ap

FIG. 9. Dynamic cooperativity for~a! scalar displacement an
~b! vector displacement, respectively, for varying time intervals
various temperatures.
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ciable positive cooperativity due to the local regions w
high mobilities. Hence, heterogeneity still exists in our la
tice Coulomb gas in terms of local mobility distribution, b
unlike the case of hard sphere systems, there is no ap
ciable average local flow.

Also, we may look into the nature of the equilibrium dy
namics of the system in wave-vector space. Figure 10 sh
the structure factorS(q)[^urqu2& at equilibrium whererq

[( j exp@iqW•rWj#/N whereq5(2p/L)n, n51,2, . . . ,2/L. We
see that the structure factor of our LCG shows some simi
ity to those of dense liquids with the first peak correspond
roughly to the inverse of the average distance betw
charges. Due to the lattice nature of the LCG, the wave v
tor has a cutoff value atqmax5p as in the figure.

The diffusive properties of the system can be probed
calculating the incoherent scattering function~ISF! FS(q,t)
which is defined as in our model of LCG

FS~q,t ![K (
j 51

NQ

expiqW •@rW j~ t !2rW j~0!#L Y NQ , ~8!

where rW j (t) denotes the position of thej th particle on the
lattice. Due to the discrete lattice nature of our model syte
we need to consider the wave vectors within the first B
louin zone q5(2p/L)n, n50,1,2, . . . ,L21. Figure 11
shows the q dependence ofFS(q,t) at temperatureT
50.033. We find that the long-time behavior ofFS(q,t) also
can be fitted to stretched exponential form. For lowq, the
late timeb exponents were close to one~pure exponential
relaxation! but asq increases the exponents decreased do
to b'0.73 for q51832p/36, andT50.033 ~Fig. 12!. As
can be seen from the definition ofFS(q,t), for Gaussian
distribution for the displacement vectorDrW i , we would get

FG~q,t ![^expiq@Dr #&5expF2
q2

2
^~Dr !2&G . ~9!

Figure 11 shows that the Gaussian approximation is q
good for lowq. That is, for long distance diffusion, the dis
tribution gets closer to Gaussian. However, asq becomes

t

FIG. 10. The structure factorS(q) at T50.033 andT50.037.
3-8
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larger, the Gaussian approximation gets worse as show
the figure. Similar features were reported in molecular
namics simulations on the dynamics of supercooled w
@25#.

In summary, we have shown that the 2D LCG with
fractional filling of charges exhibits an equilibrium rela
ation behavior, above the first-order melting transition, ch
acterized by two time regimes of stretched exponetial fo
with temperature-dependent exponents, which is quite s
lar to the primary relaxation of typical supercooled liquid
We found a strong deviation from proportionality betwe
the diffusive time scale and the structural relaxation ti
scale resembling the breakdown of the SE relation in su

FIG. 11. The incoherent intermediate scattering functions
temperatureT50.033 for some wave vectorsq. Also shown are the
Gaussian approximations to the scattering functions. We can
that the Gaussian approximation is worse at large wave vector
m
c
c

.

B
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cooled liquids. This is accompanied by a characteristic
namic cooperativity, where the scalar displacement exhi
positive cooperativity while the vector displacement sho
anticorrelations leading to the vector cooperativity less th
unity. We have identified the microscopic heterogeneo
structure which is responsible for this phenomena.
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