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We present Monte Carlo simulation results on the equilibrium relaxation dynamics in the two-dimensional
lattice Coulomb gas, where finite fractiohef the lattice sites are occupied by positive charges. In the case of
high-order rational values dfclose to the irrational number-dg [g=(/5—1)/2 is the golden mednwe find
that the system exhibits, for a wide range of temperatures above the first-order transition, a glassy behavior
resembling the primary relaxation of supercooled liquids. Single-particle diffusion and structural relaxation
show that there exists a breakdown of proportionality between the time scale of diffusion and that of structural
relaxation analogous to the violation of the Stokes-Einstein relation in supercooled liquids. Suitably defined
dynamic cooperativity is calculated to exhibit the characteristic nature of dynamic heterogeneity present in the
system.
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. INTRODUCTION XY (UFXY) models in two dimensions, which serve as a
model for two-dimensional arrays of Josephson junctions un-

The dynamics of supercooled liquids approaching thejer the influence of uniform transverse magnetic fields. Re-
glass transition remains one of the most fundamental probcent work[13] has shown that, irrespective of the true nature
lems in condensed matter physjdd. Some of the prominent  of the low temperature phase of this system, the equilibrium
dynamic features in supercooled liquids include the enordynamics of the UFXY model in the intermediate range of
mous increase in the relaxation time scale with loweringthe temperature for frustration paramefenear 1-g=(3
temperature, and the nonexponential relaxation in response /5)/2~0.382 exhibits a close analogy to that of super-
to an external perturbation. In addition to these features, agooled liquids. Both spin and vortex dynamics show
anomaly in transport properties, such as a breakdown of thgretched  exponential ~relaxations with temperature-
Stokes-EinsteinSE) relation in highly supercooled liquids, dependent stretched exponents. In order to investigate the
has been observed in experimef$and simulation$3-5].  gynamics of this system in more detail, we attempted to cal-
Although there exist some theoretical attemfis-10, the  cyjate the self-diffusion properties of vortices. However, it
underlying microscopic mechanism for the violation of thetyred out to be numerically ambiguous and tricky to trace
SE relation is not well understood. Recently, there have beefhe trajectories of individual vortices. This is because indi-
many experimental and simulational studies of supercoolegidual vortex around a plaquette is defined in terms of phase
liquids that demonstrate the existence of kinetic heterogengyngles and one probes the movement of individual vortices
ity which was often invoked to explain the origin of the not directly but only indirectly through changes of phases,
nonexponential relaxation as well as the breakdown of thgyhich at times, especially when multivortex motion occurs,
SE relation[11]. makes it ambiguous to determine the original position of a

In relation to these questions on microscopic slow dy-vortex corresponding to a new neighboring vortex.
namic features in supercooled liquids, we deemed it worth- One way to overcome this difficulty was to map the
while to investigate whether similar dynamic features can bé&JFXY model onto a LCG via Villain transformatiofl4],
found in simpler lattice spin systems or lattice gas systemswvhere the positive charges in the LCG correspond to the
In this work, we show that the aforementioned features opositive current vortices in UFXY models. One can readily
supercooled liquids, i.e., slowing down, nonexponential reprobe the diffusive dynamics of charges without ambiguity
laxation, and théanalog of the breakdown of the SE rela- in the LCG unlike the case of UFXY model. Hence we can
tion, are also observed in a two-dimensiortaD) lattice  investigate both the structural relaxation dynamics and self-
Coulomb gagLCG) system. We also find that the relaxation diffusion dynamics of individual vortices in LCG with rela-
of the system exhibits a spontaneous appearance of spatiale ease.
heterogeneity, which we argue is the underlying cause for the With this advantage, we have numerically investigated the
nonexponential relaxation and the breakdown of the SE reequilibrium relaxation dynamics and diffusion characteristics
lation. of LCG with the charge density factdrnear 1—g=0.382.

In recent years, there have been some efforts to findVe observe that for some range of temperatures above the
glassy dynamic features in the lattice spin systems with nonfirst-order transition, the equilibrium relaxation exhibits slow
random interaction§12]. One of the well-known examples dynamic features such as stretched exponential relaxation
of disorder-free lattice model system is uniformly frustratedand a breakdown of proportionality between the diffusive
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time scale and the structural relaxation time scale. the other hand, the displacement vector itself shows cooper-
It was a common belief that the 2D UFXY model and theativity a little smaller than unity due to anti-correlations in
corresponding LCG belong to the same universality clasghe direction of particle motions. This means that the system
with essentially the same phase transition properties, grounean be divided into highly mobile regions and relatively inert
state symmetry, for example. However, recent work on LC@<€gions, resulting in highly inhomogeneous local mobility
by Gupta, Teitel, and Gingra&TG) [15] and also another distribution. However, there is no macroscopic flow of par-
work on the UFXY model by Denniston and TafigT) [16] ticles that will generate long-range positive correlations be-
showed that there exists some difference between the twiveen the directions of flows of particles.
model systems, especially in the case of dense frustration. When quenched to a temperature belbw the system is
Both model systems exhibit first-order transition but the lowalways found to undergo phase ordering via slow coarsening
temperature vortex configurations in UFXY models are dif-pProcesses. The system therefore does not remain in a super-
ferent from the charge configurations of the correspondingooled state. Rather it becomes slowly crystallized. It should
LCG for f near 1-g=0.382. The underlying cause for this be€ emphasized that in this system it is the relaxation for the
breakdown of the Villain approximation in the limit of dense temperaturesibove T that exhibits slow dynamic behavior
frustration is not known, but it is probably related to the Which shares some common features with that of super-
application of spin-wave integration to systems having manyooled liquids.
metastable states with similar energies, which may cause the
neglect of multivortex correlations. Il. MODEL AND SIMULATION METHODS

Special interest has been given to the caskagproach- General 2D LCG[20] is described by the following

ing 1—g [17,18. Consider a system whefeequalsp,/qq S
: : C : . Hamiltonian that can be mapped from the UFXY model by
(pp andqgg are relative primeswhich is a rational approxi means of the Villain transformatiofid],

mant to 1-g. Here, in the case of a UFXY model, DT ar-
gues that the low temperature vortex configuration has lattice 1

periodicity which is of ordeq?, i.e., much larger thagg. On HCG=§ Z QiG(rij))Qj, (1)
the other hand, in the case of LCG, GT®5] showed, via g

Monte Carlo (MC) simulations, that the low temperature \é\/{'erer” is the distance between the sifeand], and the

agnitude of charg®; at sitei can take either &+ f or
f, wheref corresponds to the frustration parameter in the

related XY models. Charge neutrality conditi@nQ; =0 im-
lies that the number density of the positive charges is equal
f. As was mentioned above, we can thus view the system

charge configurations are characterized by arrangements
diagonal stripes that are either completely filled, completely
empty, or partially filled with charges that are quite different
from those vortex configurations in the corresponding UFXY
model. However, GTG did not enumerate the exact pattern

of low temperature charge configuratioissich as spatial pe- as a lattice gas oNf charges of unit magnitude upon uni-

riodicity) for general cases of dense charge filling. In thisform negative background charges of charge densityy

nllorrk W)?i f;nd ti?r?t’l forr th? \r/i?luiistr?ft?e;[/\\//v?erg 1/r3 tar:d 2{}5} N=L2 is the total size of the system with the linear dimen-
ere exist a simple regularity € low temperature chargg;, , L). The lattice Green’s functio®(r;;) solves the equa-
configuration which consists of periodic arrangements o ion

combinations of a few basic striped charge pattéses Sec.
). 1

For a wide range of quenching temperatures above the (AZ— F)G(rij): —275 0, 2
first-order transitiorT, the equilibrium relaxation continues

to slow down with lowering temperature, and the form of theyyherea? is the discrete lattice Laplacian ahds the screen-
relxations are characterized by the stretched exponential witihg |ength which, in a normal case of no screening, is set to
temperature-dependent exponents. Moreover, we ObServ, infinity. For the case of the usual Villain transformation of
that the model exhibits a separation of the two characteristighe UEXY model. we have.=«. But it is included in this
time scales, i.e., the time scale of single-particle diffusioneqyation for generality. Since, in this work, we restrict our

and that of structural relaxation. This f_eature is quit_e analoytention to only a square lattice with periodic boundary con-
gous to the breakdown of the SE relation observed in supegjtions G(r) is given by

cooled liquids. Stretched exponential relaxation is observed

to be accompanied by interesting dynamic heterogeneity in - eik?_ 1
the system. It appears that the kinetic heterogeneity is the G(N=— E 5 ©)
underlying reason for both the stretched exponetial relax- N &0 2~ cosk,— cosky+ 1/

ation and the separation of the relaxation and diffusion time > ]
scales. wherek are the allowed wave vectors with),=(27n /L),

A convenient measure for dynamic heterogeneity is thevith n,=0,1,...,L—1. In the case of infinite screening
so-called dynamic cooperativify1 9] of the particle motions. length, for large separation one getsG(r)=—Inr [21]. In
This measures the reduction of the effective degrees of fredhis work we consider the limiting case af—« only.
dom. One interesting result from our simulations is that the In our MC simulations, the initial disordered random con-
magnitude of the velocityor displacement vectpexhibits a  figuration is updated according to the standard Metropolis
strong increase in cooperativity of the particle motions. Onalgorithm by selecting a positive charge at random and mov-
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(a) t=16 MCS (c) t=65536 MCS
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FIG. 1. Snapshots of charge
configuration at time stepé) t
=16 MCS, (b) t=4096 MCS,(c)
t=65536 MCS, and (d) t
=1 048576 MCS for temperature
T=0.026,L =236, andf=55/144,
exhibiting coarsening toward an
ordered striped state. Positive
charges are represented by filled
squares.

e e " e

ing it over to one of the nearest neighlidiN) or next near- GTG, we also find that there exist a first-order transition in
est neighboNNN) sites[15]. We find that this NNN hop- LCG with f near 1—g. Figure 1 shows temporal snapshots of
ping algorithm is particularly effective in terms of simulation charge configurations evolving from a disordered state into
time as compared with NN hopping alone, as was emphaan ordered configuration after being quenched to a tempera-
sized in[15]. Moreover, at low temperature, NN hopping ture T=0.026. The first-order nature of the phase transition
alone presented severe energy barriers to the motions @hn easily be confirmed by enumerating the histogram of
charges in the case of relatively dense Coulomb gas,fi.e.,energiesP(E) near the transition temperatur22]. P(E) is
approximately larger than 1/3. obtained by counting the occurrences of energies for each of
The presented results are averages of over-BD dif-  the equally spaced energy bins while performing the equilib-
ferent random initial configurations, depending on the temyjum Monte Carlo simulationgvia simple Metropolis algo-
perature. In order to ensure that equilibration is achieved, wéithm). For a system with a first-order transition, the energy
calculate the two-time charge density autocorrelation funchistogramP(E) becomes bimodal near the transition tem-
tion and locate the waiting time beyond which the autocorperature corresponding to a mixture of the ordered state
relation function no longer depends on the waiting time. As(with lower energy and a disordered stateith higher en-
for the values of the charge density paramédfewve chose ergy). The transition temperatur€, can be determined by
f=55/144~0.3819, which is close td=1—g, and square |ocating the temperature where the subareas under the two
lattices of linear sizd. =36 are chosen with periodic bound- peaks are equal. Figure 2 shows two histograms near the
ary conditions. This value dfis chosen as a simple rational transition temperature, where we could estimate the transi-
value that satisfies the two conditions of both being close taion temperature approximately &ig=0.0316. Since we did
1—g and being commensurate with the lattice periodicity 12not attempt a detaled analysiacluding a finite size scaling
as explained in Sec. Ill. We found that qualitative features obf the histogram, we think that this estimate value of the
relaxation dynamics are the same for other nearby values afansition temperature should not be considered too seriously

the frustrationf. for its precision.
We find empirically that there exist a simple regularity in
Il. SIMULATION RESULTS AND DISCUSSIONS the low temperature charge configuration in LCHg. 3).

For the case of values dfin the range 1/&f<2/5, it is

found that the low temperature configuration becomes quasi-
We first discuss the equilibrium phase transition andone-dimensional with periodic striped patterns. In the cases

charge configuration of the system. As was first shown byof f=1/3 and f=2/5 the ground state configurations are

A. First-order transition and low temperature configuration
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' ' This forms the basis of the ground state configuration for the
8x10° o —° T=0.03165 case off =2/5 with lattice periodicity five.

TR0 Lastly, the third component patte(type Il patterr) con-

sists of a sequence of seven diagonals that are sequentially
empty, filled, empty, partially filled, empty, fille@hdempty,
i.e., (01®010) in our notation, wherp refers to a partially
filled diagonal where only part of the diagonal sites are oc-
cupied by positive charges. This pattern is essentially a par-
tially filled diagonal enveloped by two filled diagonals on
both sides at the second neighbor diagonal position, which
may be termed as ehannelstructure. This can form a basis
with spatial lattice periodicity seven.

Here we describe the low temperature ordered patterns for
values off around 1-g only, leaving the detailed description
of the charge patterns for the full rangefofalues between
1/3 and 2/5 to a separate publicati®8]. Near the value of
the filling ratio f=1-—g=0.382, we find that, among the

FIG. 2. Energy histogram near the first-order transition temperathree patterns above, only two typéype Il and type I
ture (for T=0.031 65 andlr =0.0317). pattern$ participate in the stable charge configurations with
the resulting spatial lattice periodicity depending on the com-

identical to the low temperature vortex configurations in thelination of the two component patterns.

UFXY model. However, for values dfin between 1/3 and ~ We find that there exists a value=f =0.381 which
2/5, the low temperature patterns are found to be, unlike thgeparates two regimes with distinct low temperature striped
case of the corresponding UFXY model, consisting of peri-patterns. For values df in the range 0.36f=<0.381, the
odic arrangements of combinations of two out of three typestable striped patterns turn out to have periodidity-7

of striped charge patterns as follows. which consists of simple repetitions of channel structures

First the component patteftype | patteriis a sequence (type Il pattern. Note that this periodicity seven refers to
of three diagonals which aempty, fillegandempty respec- the periodicity of the filled diagonals onlgneglecting the
tively [that may be denoted K10 in our notation where 1 true periodicity including the charge configurations within
refers to a filled diagonal and 0 refers to an empty diaglonal the partially filled diagonals
In other words, it is a pattern with a single isolated diagonal On the other hand, for values din the range 0.38%f
filled with charges that is neighbored by empty diagonals on<0.39, the stable configuration exhibits a periodicly
both sides. Repetition of this pattern alone produces the=12, which consists of double-filled diagonatgpe Il) and
ground state configuration for the casefef1/3 with spatial channels(type Ill) alternatingly placed. As the value of
periodicity three. continuously increases within the two reginigsthe aboveg,

Second component pattettype Il pattern consists of a the system in the low temperature stable configuration sim-
sequence of five diagonals that ampty, filled, empty, filled ply adjusts itself by accomodating the extra charges into the
andempty respectively, 001010 in our notation. This may partially filled diagonal channels and thereby changing the
be termed as a double-filled diagonal because two filled dieharge filling within the channels. The dividing value fof
agonals are positioned in parallel at a second neighbor=f.=0.381 between the two regimes appears to correspond

to the value 8/21 in which case the partially filled diagonals
I have a filling density exactly equal to 2/3. In general, at
much lower temperaturg, (below T;) the charges within
the partially filled channels are expected to exhibit ordering
[15,23, which would depend sensitively on the rationality of
the exact filling ratio of charges inside the partially filled
diagonals.

An important aspect of our simulations is that one has to
choose the lattice size appropriately in order to match the
periodicity of the true low temperature configuration in the
thermodynamic limit. If, otherwise, one chooses a lattice size
that is incommensurate with the periodicityf striped pat-

6x10° |

P(E)

4x10° |

2x10° |

0.125 0.127 0.129 0.131 0.133 0.135
Energy per site

I 1 I+ 10 terng, then one ends up with defective charge configurations
* | fI ! | with patches of local ground state configurations. We think
f 173 06 0381 0.39 2/5 that this is probably why GTG got two different equilibrium

configurations when two different lattice sizes-26 andL
FIG. 3. Regimes of charge patterns for the range of valuds of =52 are used forf =5/13 since thesd’s turn out to be
between 1/3 and 2/5. See the text for details. incommensurate with the true periodicity=12.
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FIG. 4. (a) Charge autocorrelation functions for temperatufes0.1, 0.08, 0.06, 0.05, 0.045, 0.042, 0.039, 0.037, 0.035, 0(@33.
Arrhenius plot for the relaxation timdog(7) versus 1T]. (c) Charge autocorrelation functions (a) replotted in terms of the rescaled time
t/7(T) which shows that the time-temperature superposition is brakBrnlemperature dependence of thend 8 exponents for charge
autocorrelation functions.

Even when the screening lengthis finite, we find that, at where the large angular brackets represent an average over
low temperatures, the striped configurations shown abovdifferent random initial configurations.
persist up to the limit of the screening lengtk= A, with A\ Shown in Fig. 4a) is the on-site charge autocorrelation
being approximately of order onf23]. If the screening function C(t) for temperatures fronT=0.1 down toT
length is further reduced below, then the striped configu- =0.033. From this figure, we observe a slowing down in the
rations seem to be no longer stable in such a way that thgiructural relaxation for this temperature range. One can ex-
partially filled diagonals get rarer. The influence of theract a characteristic time scatéT) which, for example, is
screening effect on the statics and the relaxation dynamicgefined asC(t=7(T))= 1/e for each temperaturg. As Fig.
needs further study. 4(b) clearly shows, the temperature dependence of the relax-
ation time exhibits a non-Arrhenius behavior. We also
B. Equilibrium relaxation dynamics checked whether the so-called time-temperature superposi-
. I . . tion holds for the above autocorrelation functions, which is
We now discuss the equilibrium relaxation dynamics of h in Ei We clearl hat ti
the model above first-order transition. In order to probe theOWn 1N FIg. 40). We clearly see that time-temperature su-
structural relaxation of charges we.measured the on-sit erposition is systematically broken by the autocorrelation
. rges, unctions. This is consistent with the fact that the stretched
charge autocorrelation functions, - ;
exponents have dependence on temperature as is shown just
below.

N
Cit)= 2 Qi(0)Qi(1) / N, (4) . We find that the relaxatlon pattern of the correlation func-
i=1 tion C(t) can be characterized by a power law relaxation
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FIG. 5. Squared displacemewt(t) versus timet for the same T
temperatures as in Fig(&. The inset shows the inverse diffusion . ) .
constant 1D versus the inverse temperaturd Iwhich exhibits an FIG. 6. Comparison of the two time scalés = and 7 (4D~
approximate activated behavior. versusT), which implies that the diffusive time scale increases

slowly (as the temperature is lowepesls compared with the struc-

C(t)=1-At"™ (known as the von Schweidler relaxatjon tral relaxation time.

in the early time regime and a stretched exponential relax-
ation C(t):CO(T)exp(—A’tﬁm) in the late time regime. proportionality between the two time scales is observed for a
However, as the temperature gets higher, the regime of vavide range of temperatures below=0.1 and becomes
lidity for early time power law relaxation was significantly Stronger as the temperature is lowered. This separation of the
reduced and we could better fit the early time relaxation withfwo time scales is due to the weaker temperature dependence
another stretched exponential fom(t)zexp(_Antb’(T))_ of of the diffusion coefficient. That is, (_jlffusmp is relatively
course for the low temperature regime, we could l€¥) enhar_1ced_ at lower temperatures. This is quite anal_ogous to
=b'(T). the violation of the SE relatlor_ﬂII:'-I'/an, Whe_rea.\ is a
Figure 4d) shows the temperature dependence of the fitMolecular length andy is the viscosity of the liquid ob-
ted exponents. We see that nonexponentiality increases 4§7V€d in experiments on supercooled liquids Here we
the temperature decreases. These results clearly indicate tHEntion that there exists a correlation between the increase
the equilibrium relaxation in the 2D LCG abovg closely _Of nonexponentialityas the temperature is lowejeahd the
resembles the primary relaxation of typical fragile liquids. ncrease of the productDBir at low temperaturef24].
One of the main characteristic features of the single- | We suppose that there exists a single dominant relax-

particle dynamics is described by the mean square displac&ion mode in the systerfand hence one relaxation time
ment((AF)Z) which is defined as scaler), then we would obtain a simple exponential behavior

for the relaxation functiol©(t)~e~"7. On the other hand, if
Ng the system consists of many regions with different relaxation
S oy - - 2 times, then the relaxation function would be roughly some
((Ar) >_<J-Z‘l [ri()=r;(0)] >/ No» ®) superposition of exponentials with a broad distribution of
relaxation times, which would be in general not expressible
wherer (1) s the posiion vector ofthgh charge atime {12 STRE Ponenta forh fut 1 stetched exponeta
andNg the total number of charges. Figure 5 sha@sr)©) The fact that there exists a breakdown of proportionality
for various temperatures. It exhibits an early time subdiffu-petweenr andD 2 can be interpreted in the following way
siye reg.ime.and crosses over into thg late time diffusiv_e "ethat invokes dynamic heterogeneity. As the temperature is
gime. Diffusion constanb can be obtained from the relation |gwered, the system consists of many regions with different
((Ar)?)=4Dt in the long-time limitt—cc. Early time sub-  relaxation time that comes from different local mobilities.
diffusive behavior is thought to be coming from local frus- We can easily see that the structural relaxation time is domi-
trated motions of charges before reaching an average disrated by the least mobile regions, that is, by the regions with
placement of unit lattice spacing. The inset of Fig. 5 displayghe longest relaxation time. On the contrary, the average
the inverse diffusion constant[l/versus the inverse tem- (long-time diffusion characteristics are dominated by the
perature II, which shows that D exhibits an approxi- most mobile regions. In other words, the structural relaxation
mately activated behavior in this temperature range. function and the self-diffusion function, respectively, are
To test the proportionality of the two time scales, theprobing more or less opposite aspects of the relaxation be-
structural relaxation time scakeand the diffusion time scale havior of the system. For an extreme example, one can imag-
D%, we plot the temperature dependence of the produdne a system where half of the whole system is frozen
4D 7 in Fig. 6. Here, we clearly see that the breakdown of themotion of the component particlewhile the remaining half
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charges moving along partially filled diagonal channels. We
also find some extended interfacial regions where no discern-
ible local order can be identified that exhibit relatively high
mobility. Enhancement of particle diffusion is probably due
to the motions of charges along the partially filled diagonals
as well as those fluidized motions in the extended interfacial
regions. These fastly moving regions in surroundings of very
slowly moving regions offer a specific example for spatial
heterogeneity in glassy systenfd,5], which was often
thought of as the physical mechanism for breakdown of the
SE relation.

One simple way to quantify the degree of dynamic het-
erogeneity directly from the local motions of particles is to
calculate the dynamic cooperativit$9] for one particle dy-
namic quantities such as, e.g., displacement veckrs

=|r;(t+At)—r,(t)| between the tim¢ andt+ At for some
fixed time intervalAt. We can also choos¥; to be the

of the system has a finite relaxation time with uniformly Vector displacement itsel;=r;(t+At) —ri(t). If there are
distributed mobile particles. For this system the structural’© correlations between the motions of particles, then the
relaxation timer would be infinite due to the frozen half of variations of theX;'s will satisfy
system, but the inverse of the average diffusion constant
g 2 Xi
I

FIG. 7. Typical charge configurations d=0.033. Positive
charges are represented by filled squares.

D~ 1is finite due to the mobile part of the system, leading to
an extreme breakdown of the SE relation. The above simu-
lation result thus can be interpreted as evidence pointing to-
ward the existence of a kinetic heterogeneity in the relax-
ation dynamics and the mobility of the system.

In fact, the kinetic heterogeneity can be visualized in our
system. Typical charge configuration®t 0.033, as shown H define the d fivit
in Fig. 7, exhibits local striped patterrsrdered domains euer, we can define the dynamic coaperativity as
and interfacial regions due to mismatch between adjacent
domains. For a fixed quenching temperature, the average size o E Xi}
of these local domains reaches a certain length scale when NCOOP— ' @)
the system equilibrates. After equilibration, the system struc- X 2 '
turally rearranges itself going from one configuration to an- i ol Xi]
other with local domains of similar length scale. Figure 8
shows the trajectories of moving positive charges over a timén the case of no correlations between the motions of par-
interval of 500 MC steps fof = 0.033(corresponding to Fig. ticles, as in Eq(6), we getN$’°P=1. If there exist some
7). We can see that there exist local regions with activelypositive correlated motions between particles, we would get
moving charges and other regions with relatively immobiIeN§<°°p>1, while anticorrelations between the motions of par-
charges. Among the active regions, we can find thosgicles would result inNS°°P<1. Doliwa and Heuer investi-

gated the dynamic cooperativity of hard sphere systems in
j“\/ "N ? 7 q’ﬂ\ I 2D and 3D, where they found finite cooperativiti§°P
>1) for both vector displacement and the scalar magnitude
of the displacement, which is consistent with the snapshots
of the particle motions in their work. They argue that the
dynamic cooperativity measures the total reduction of de-
grees of freedom due to the correlations. Here we also stud-
ied the dynamic cooperativity of the lattice gas particles by
calculatingN§°°P for both the scalar displacement and the
vector displacement itself. Interestingly, we found that the
scalar displacement exhibited finite dynamic cooperativity
[Fig. 9@ ], while the vector displacement itself showed weak
anticorrelations between particles, as shown in Fi{g).9n
the case of scalar displacement, the cooperativity increases at
first as the time intervalt increases and reaches its maxi-

FIG. 8. Trajectories of moving positive charges B0.033 ~ Mum near then-relaxation time scale~. Then it decreases
over a time interval of 500 MC steps. Arrows indicate the directionsback to values around unitjcorresponding to no correla-
of single charge motions. tions) at largeAt.

= ol Xi], (6)

where o[ x] denotes the mean square deviations of the ran-
dom numbex, o x]={(x—(x))?). However, some correla-
tions between the particle motions will increasg>;X;] or
anticorrelations will decrease it. Following Doliwa and
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6 T
=—a T=0.037

Scalar cooperativity
S(q)

10° 10

FIG. 10. The structure factd@®(q) at T=0.033 andT =0.037.

1.2 . : :
—— T=0.033 ciable positive cooperativity due to the local regions with
~~~~~~~~~~~~~~~~~ T=0.035 (b) ] high mobilities. Hence, heterogeneity still exists in our lat-
------ T=0.04 tice Coulomb gas in terms of local mobility distribution, but

' unlike the case of hard sphere systems, there is no appre-
ciable average local flow.

Also, we may look into the nature of the equilibrium dy-
namics of the system in wave-vector space. Figure 10 shows
the structure facto(q)=(|p4|?) at equilibrium wherep,
=3; exr[id-ﬂ]/N whereq=(27/L)n, n=1,2,...,2L. We
see that the structure factor of our LCG shows some similar-
0.7 ity to those of dense liquids with the first peak corresponding
roughly to the inverse of the average distance between
. . . charges. Due to the lattice nature of the LCG, the wave vec-
10° 10° 10* 10° tor has a cutoff value a,,,= 7 as in the figure.

At The diffusive properties of the system can be probed by

: . : calculating the incoherent scattering functids8F) F<(q,t)
FIG. 9. Dynamic cooperativity fofa) scalar displacement and which is defined as in our model of LCG

(b) vector displacement, respectively, for varying time intervals at
various temperatures.

1.1

Vector cooperativity

0.6
10

No

Fs(q.=({ > eXpiQ‘[rj(t)—rj(O)]> / No, (8
Contrasting features of cooperativity for our LCG system =1
and that for the hard sphere systems may be interpreted as - . , ,
follows. In the case of hard sphere systems near the glag¥herer;(t) denotes the position of thigth particle on the
transition, the packing density is very high and the interpar-'att'ce- Due to the_ discrete lattice nature of our modt_al sytem,
ticle interaction is a short-ranged one. Therefore, the localVe Need to consider the wave vectors within the first Bril-
motions of particles in hard sphere systems are naturallfpuin zone q=(2m/L)n, n=0,1,2...,L—1. Figure 11
highly correlated in both its direction and magnitude due toShOWs theq dependence ofF(q,t) at temperatureT

the continuity constraint of particles resulting in a large scale=0-033. We find that the long-time behaviorfe§(q,t) also
flow with directional correlations. can be fitted to stretched exponential form. For lgwthe

In contrast, in the case of the LCG, the density of particledate time 3 exponents were close to orfpure exponential
is relatively low (f=0.38) as compared with the case of hard relaxation but asq increases the exponents d(_ecreased down
sphere systems near the glass transition. In addition to tha@ 8~0.73 for q=18x27/36, andT=0.033 (Fig. 12. As
charge motions in the LCG are driven by the thermal effectc@n be seen from the definition &fs(q,t), for Gaussian
From the snapshots of charge configurations, we see thdistribution for the displacement vectar;, we would get
there exist locally mobile regions as well as locally immobile 5
regions. Locally immobile regions consist of charge configu- . . _ q
rations that are close to the low temperature striped patterns. FG(q,t)z(exp|q[Ar])—ex;{ B ?<(Ar)2)
Mobile regions, however, consist of charges that are agitated
in random directions due to the thermal effect. Thus we dd-igure 11 shows that the Gaussian approximation is quite
not observe positive dynamic cooperativity in vector dis-good for lowq. That is, for long distance diffusion, the dis-
placement, but only the scalar displacement exhibits appreribution gets closer to Gaussian. However, cpbecomes

.09
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1
1 A
T=0033 ® ®b
08 T,
0.8 T
—_ o ‘
E 0.6 | £
g :
=l S 06
: =7
=z 'S, (1), q=3x2n/36 N 2 T
g e 8, (), q=6x2m/36 K B N ] h
02 +5 m,q=152n/36 \ C
— Fgav , 4=3x2n/36 o4
....... Fy(a,0) , q=6x21/36 ‘
0 f-- at), q=15x2m/36
-0.2 . : :
10° 10' 10 10° 10° 10° 0.2 I
t (MCS) ’ 1 s 3 4

q
FIG. 11. The incoherent intermediate scattering functions at
temperaturd = 0.033 for some wave vectogs Also shown are the
Gaussian approximations to the scattering functions. We can s

that the Gaussian approximation is worse at large wave vectors. L L . L
PP 9 cooled liquids. This is accompanied by a characteristic dy-

namic cooperativity, where the scalar displacement exhibits
larger, the Gaussian approximation gets worse as shown ifositive cooperativity while the vector displacement shows
the figure. Similar features were reported in molecular dy-anticorrelations leading to the vector cooperativity less than
namics simulations on the dynamics of supercooled watefinity. We have identified the microscopic heterogeneous

[25]. _ structure which is responsible for this phenomena.
In summary, we have shown that the 2D LCG with a

fractional filling of charges exhibits an equilibrium relax-
ation behavior, above the first-order melting transition, char-
acterized by two time regimes of stretched exponetial form We thank M. D. Ediger, P. Harrowell, K. Kawasaki, and
with temperature-dependent exponents, which is quite simiS. Teitel for discussions. This work was supported by the
lar to the primary relaxation of typical supercooled liquids. Korea Research Foundation Grant No. KRF-1999-015-
We found a strong deviation from proportionality betweenDP0098(S.J.L. and B.K. and No. KRF-1998-15-D00089
the diffusive time scale and the structural relaxation time(J.R.L). B.K. was also supported by Korea Research Foun-
scale resembling the breakdown of the SE relation in supedation Grant No. KRF-2000-008-2.

FIG. 12. g dependence of thk and 8 exponents for the inter-
égediate scattering functions at temperatlire0.033.
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